Calculus 140, section 3.6 Implicit Differentiation

notes by Tim Pilachowski
All of the equations encountered so far have been functions, $y=f(x)$: for example $y=45 x^{2}-x^{3}$ and $P(x)=\frac{80}{2+3 e^{-10 x}}$. This is an explicit statement of the function formula, and given an explicit function and a value for x, the determination of the corresponding y-coordinate becomes a calculation. In addition, the determination of the slope of the curve at that value of x means using one of the derivative rules developed so far, then calculating.

Even when a function is not expressed explicitly, it is sometimes possible to solve for the explicit version:

$$
5 x+2 y=12 \Rightarrow y=f(x)=-\frac{5}{2} x+6
$$

However, not all equations involving x and y can easily be rearranged algebraically into an explicit version, and others cannot be written explicitly at all. We'll call these implicit equations. (See Examples below).

It is sometimes possible to find a derivative $\frac{d y}{d x}$ from an implicit equation. The process is called implicit differentiation.

Example A: Given the equation $5 x^{2}+2 y^{2}=53$, a) Verify that the point $(x, y)=(-3,2)$ satisfies the equation. b) Use implicit differentiation to find $\frac{d y}{d x}$. c) Find the equation of the tangent to the curve at $(x, y)=(-3,2)$. answers: $-\frac{5 x}{2 y} ; \frac{15}{4} x+\frac{53}{4}$

Example B: Given the equation $\ln (x-y)=x y$, a) Use implicit differentiation to find $\frac{d y}{d x}$. b) Find the equation of the tangent to the curve at $(x, y)=(1,0)$. answers: $\frac{x y-y^{2}-1}{-1-x^{2}+x y} ; \frac{1}{2} x-\frac{1}{2}$

Example C: Given the equation $x^{2} y^{3}=1$, a) Use implicit differentiation to find $\frac{d^{2} y}{d x^{2}}$. b) Solve for the explicit equation and find $\frac{d^{2} y}{d x^{2}}$. c) Show that the results from (a) and (b) are equal. answer: $\frac{10 y}{9 x^{2}}$

Example D: Given the equation $2 x+3 y=e^{\sin (x y)}$, find $\frac{d y}{d x}$. answer: $\frac{y e^{\sin (x y)} \cos (x y)-2}{3-x e^{\sin (x y)} \cos (x y)}$

Example A revisited: Suppose that the equation $5 x^{2}+2 y^{2}=53$ represents the path of an oval racetrack. The position coordinates x and y would each be a function of time t. Use implicit differentiation to find $\frac{d y}{d t}$ in terms of x, y and $\frac{d x}{d t}$. [We're finding the y-component of velocity!]

