Calculus 140, section 3.6 Implicit Differentiation

notes by Tim Pilachowski

All of the equations encountered so far have been functions, y = f(x): for example $y = 45x^2 - x^3$ and

 $P(x) = \frac{80}{2+3e^{-10x}}$. This is an *explicit* statement of the function formula, and given an explicit function and a

value for *x*, the determination of the corresponding *y*-coordinate becomes a calculation. In addition, the determination of the slope of the curve at that value of *x* means using one of the derivative rules developed so far, then calculating.

Even when a function is not expressed explicitly, it is sometimes possible to solve for the explicit version:

$$5x + 2y = 12 \quad \Rightarrow \quad y = f(x) = -\frac{5}{2}x + 6.$$

However, not all equations involving *x* and *y* can easily be rearranged algebraically into an explicit version, and others cannot be written explicitly at all. We'll call these *implicit* equations. (See Examples below).

It is sometimes possible to find a derivative $\frac{dy}{dx}$ from an implicit equation. The process is called *implicit differentiation*.

Example A: Given the equation $5x^2 + 2y^2 = 53$, a) Verify that the point (x, y) = (-3, 2) satisfies the equation. b) Use implicit differentiation to find $\frac{dy}{dx}$. c) Find the equation of the tangent to the curve at (x, y) = (-3, 2). answers: $-\frac{5x}{2y}$; $\frac{15}{4}x + \frac{53}{4}$

Example B: Given the equation $\ln(x - y) = xy$, a) Use implicit differentiation to find $\frac{dy}{dx}$. b) Find the equation of the tangent to the curve at (x, y) = (1, 0). *answers:* $\frac{xy - y^2 - 1}{-1 - x^2 + xy}$; $\frac{1}{2}x - \frac{1}{2}$

Example C: Given the equation $x^2 y^3 = 1$, a) Use implicit differentiation to find $\frac{d^2 y}{dx^2}$. b) Solve for the explicit equation and find $\frac{d^2 y}{dx^2}$. c) Show that the results from (a) and (b) are equal. *answer*: $\frac{10y}{9x^2}$

Example D: Given the equation $2x + 3y = e^{\sin(xy)}$, find $\frac{dy}{dx}$. answer: $\frac{ye^{\sin(xy)}\cos(xy)-2}{3-xe^{\sin(xy)}\cos(xy)}$

Example A revisited: Suppose that the equation $5x^2 + 2y^2 = 53$ represents the path of an oval racetrack. The position coordinates *x* and *y* would each be a function of time *t*. Use implicit differentiation to find $\frac{dy}{dt}$ in terms of *x*, *y* and $\frac{dx}{dt}$. [We're finding the *y*-component of velocity!]

